Query Guard: Privacy-preserving Latency-aware Query Optimization for Edge Computing

Runhua Xu, Balaji Palanisamy and James Joshi
University of Pittsburgh
Pittsburgh, PA, US
runhua.xu@pitt.edu
Edge Computing

It allows data produced by IoT devices to be processed geographically closer to where it is created instead of sending it across long routes to data centers/clouds.

(The background image is from xtelesis.com)

The Laboratory for Education and Research on Security Assured Information Systems (LERSAIS)

Wednesday, August 1, 2018
Why/How Edge Computing

- Why does edge computing matter
 - IoT devices have poor connectivity
 - It’s not efficient for IoT devices to be constantly connected to a central cloud.
 - latency-sensitive processing requirement
- How edge computing works
 - Triage the data locally
Overview of Query Processing

A 3-step Process

It transforms a high-level query into an equivalent and more efficient lower-level query.
Query Processing Example

Query in high-level language

```
SELECT attr₁, attr₂, attr₃
FROM t₁, t₂, t₃
WHERE t₁.a₁ = t₂.a₁ AND t₁.a₂ = t₃.a₂
```

SQL expression

```
SELECT attr₁, attr₂, attr₃
FROM t₁, t₂, t₃
WHERE t₁.a₁ = t₂.a₁ AND t₁.a₂ = t₃.a₂
```

Algebra expression

```
Π_{attr₁,attr₂,attr₃}(t₂ ⋈_{a₁} t₁ ⋈_{a₂} t₃)
```

Query execution plans

1. `Π_{attr₁,attr₂,attr₃}(
 t₂ ⋈_{a₂} t₃
 ⋈_{a₁} t₁
)

2. `Π_{attr₁,attr₂,attr₃}(
 t₂ ⋈_{a₂} t₂
 ⋈_{a₁} t₁
)

Result of the Query
Distributed Query Processing Example

Query in high-level language

```
SELECT attr1, attr2, attr3
FROM t1, t2, t3
WHERE t1.a1 = t2.a1 AND t1.a2 = t3.a2
```

SQL expression

```
SELECT attr1, attr2, attr3
FROM t1, t2, t3
WHERE t1.a1 = t2.a1 AND t1.a2 = t3.a2
```

Algebra expression

```
\Pi_{\text{attr1}, \text{attr2}, \text{attr3}} (t_2 \bowtie_{s_1} t_1 \bowtie_{s_2} t_3)
```

Query Optimizer

Query Evaluation Engine

Result of the Query

Query execution plans

- **Global Optimization**
- **Local Optimization**

Wednesday, August 1, 2018

The Laboratory for Education and Research on Security Assured Information Systems (LERSAIS)
Query Processing in Edge Computing

Join query: \(t_1 \bowtie s_1 \bowtie s_2 \)

Optimal query plan

stream s_1
- \(id \) 23
- \(attr_3 \) M

stream s_2
- \(id \) 12
- \(attr_4 \) Yes

relation t_1
- \(id \) 101
- \(s_1 \) 23
- \(s_2 \) 12
- \(attr_1 \) 35
- \(attr_3 \) AB

Edge Node E_2

Edge Node E_4

Cloud

Edge Node E_5

mobile application

request query

SELECT \(attr_1, attr_2, attr_3, attr_4 \)

FROM \(t_1, s_1[RANGE 30], s_2[RANGE 30] \)

WHERE \(t_1.s_1 = s_1.id \) AND \(t_1.s_2 = s_2.id \)
Challenges and Concerns: Edge vs Cloud

• Management policy
 • *Cloud servers are managed through strict and regularized policies*
 • *Edge nodes may not have the same degree of regulatory and monitoring oversight.*
 • Ship selected/projected data to edge nodes that may be untrusted/semi-trusted
 • Lead to disclosure of private information within the edge nodes.

• Latency
 • *Cloud: query in/cross data center(s) → proprietary network bandwidth*
 • Emphasis of QO is primarily on minimizing the query computation time
 • *Edge: nodes are scattered geographically with varying degrees of network connectivity*
 • A special emphasis of QO is network latency or statbility
Latency Analysis

Suppose that edge nodes are located in city A and the closest cloud data center is located in city B.

Edge-based approach

\[t_{edge} = \max_{i \in \{e_2, e_3\}, j \in \{(e_1, e_2), (e_1, e_3)\}} (v_i t / v_{net} + t_j) + T \]

22.223 ms

Cloud-based approach

\[t_{cloud} = \max_{i \in \{e_1, e_2, e_3\}} (v_i t / v_{net} + t_{a,b}) + T + \sum v_i t / v_{net} + t_{a,b} \]

84.818 ms

Table I

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
<th>Latency (ms)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1 - E_2</td>
<td>d_{e1,e2}</td>
<td>0.022 \cdot d_{e1,e2} + 4.862</td>
<td>t_{e1,e2} = 5.082</td>
</tr>
<tr>
<td>E_2 - E_3</td>
<td>d_{e2,e3}</td>
<td>0.022 \cdot d_{e2,e3} + 4.862</td>
<td>t_{e2,e3} = 5.202</td>
</tr>
<tr>
<td>E_3 - E_1</td>
<td>d_{e3,e1}</td>
<td>0.022 \cdot d_{e3,e1} + 4.862</td>
<td>t_{e3,e1} = 5.192</td>
</tr>
<tr>
<td>A - B</td>
<td>d_{a,b}</td>
<td>0.022 \cdot d_{a,b} + 4.862</td>
<td>t_{a,b} = 26.862</td>
</tr>
</tbody>
</table>

\^ Note that the latency of network traffic is estimated based on the distance using a linear model: \(y = 0.022x + 4.862 \) with coefficient of determination \(R^2 = 0.907 \) proposed in [14].

\^ The distance between the data center and the city is assumed to be 1000 miles, while the distance between edge nodes is 10, 20, and 15 miles, respectively.

Table II

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>30 min</td>
<td>Time interval of the query</td>
</tr>
<tr>
<td>(v_{e1})</td>
<td>1 KB/min</td>
<td>Speed of stream data generating at edge (E_1)</td>
</tr>
<tr>
<td>(v_{e2})</td>
<td>2 KB/min</td>
<td>Speed of stream data generating at edge (E_2)</td>
</tr>
<tr>
<td>(v_{e3})</td>
<td>3 KB/min</td>
<td>Speed of stream data generating at edge (E_3)</td>
</tr>
<tr>
<td>(v_{net})</td>
<td>100 Mbit/s</td>
<td>Ethernet speed</td>
</tr>
<tr>
<td>(T)</td>
<td>10 ms</td>
<td>Query time in a single machine</td>
</tr>
</tbody>
</table>
Query Processing in Edge Computing

Join query: \(t_1 \Join s_1 \Join s_2 \)

Optimal query plan

Stream \(s_1 \)
- **id:** 23
- **attr:** M

Edge Node (privacy-sensitive) \(E_2 \)

Stream \(s_2 \)
- **id:** 12
- **attr:** Yes

Relation \(t_1 \)
- **id:** 101
- **s1:** 23
- **s2:** 12
- **attr1:** 35
- **attr2:** AB

SELECT \(attr_1, attr_2, attr_3, attr_4 \)

FROM \(t_1, s_1 \text{[RANGE 30]}, s_2 \text{[RANGE 30]} \)

WHERE \(t_1.s_1 = s_1.id \text{ AND } t_1.s_2 = s_2.id \)
Privacy Disclosure Risk

Suppose that E_4 is controlled by the adversary who tries to collect users’ private information. As a result, the adversary at the public edge node E_4 can acquire the intermediate sensitive data even if it does not have access to edge nodes where the sensitive data is stored.

Samples of query execution plan candidates
Adversary Model

- **Public Adversary**
 - **has complete control of public edge nodes**
 - **can access any data stored in public edge nodes**

- **Private Adversary**
 - **can access the private edge nodes belonging to a specific privacy level**

-the adversary can access any intermediate data shipped to its controlled edge nodes during the query plan execution phase

→ the intermediate data inference attack.
Privacy Guarantee

• No privacy-sensitive information is disclosed in the query processing phase in the edge computing.
 • *if an adversary controls a public edge node*
 • it will not infer any privacy-sensitive information from monitoring the query operations
 • *even if the adversary controls a private edge node with privacy level* p
 • it cannot infer any sensitive information with privacy level higher than p
Query Guard Framework

• A traditional dynamic programming enumeration skeleton
 • the optimal plan is generated by joining optimal sub-plans in a bottom-up manner

• Specifically
 • Iterative dynamic programming approach
 • Heuristic-based methods

Algorithm 1: Pseudocode for QueryGuard framework

```
Input: A set of relations or streams $R = \{R_i\}$ with size $n$ generated from a query $Q$
Output: The optimized query plan

for $i = 1$ to $n$
do
  plans($\{R_i\}$) := access-plans($\{R_i\}$)
  LATENCY-AWARE-PRUNE(plans($\{R_i\}$))
  toDo := $R$
while $|\text{toList}| > 1$
do
  $b := \text{balanced-parameter}(|\text{toList}|, k)$
  for $i = 2$ to $b$
do
    $S \in R$ and $|S| = i$
do
      plans($S$) := $\emptyset$
      forall $O \subseteq S$ and $O \neq \emptyset$
do
        plans($S$) := plans($S$) $\cup$ PRIVACY-JOIN(plans($O$), plans($S \setminus O$))
        LATENCY-AWARE-PRUNE(plans($S$))
      find $P, V$ with $P \in \text{plans}(V)$, $V \subseteq \text{toList}$, $|V| = k$ such that eval($P$) = min{eval($P'$) | $P' \in \text{plans}(W)$, $W \subseteq \text{toList}$, $|W| = k$}
      generate new symbol: $T$, plans($T$) = $\{P\}$
      toDo = toDo $\setminus V \cup \{T\}$
    forall $O \subseteq V$
do
      delete(plans($O$))
  finalize-plans(plans($R$))
  LATENCY-AWARE-PRUNE(plans($R$))
return plans($R$)
```
Privacy Join

• Privacy Settings
 • Privacy Preference
 • the data is assigned a privacy preference parameter by data owner to control the data shipment scope
 • no ship out-of-scope in join operation
 • Privacy Level
 • each edge node is assigned a privacy level
 • the privacy level of data can be directly inferred from the privacy levels of edge nodes
 • no ship down in join operation
An illustration of the critical phases in Query Guard

Possible Joins

Privacy Levels: \(PL_4 > PL_3 > PL_2 > PL_1 \)

Algorithm 1: Pseudocode for QueryGuard framework

```
Input: A set of relations or streams \( R = \{ R_i \} \) with size \( n \) generated from a query \( Q \)
Output: The optimized query plan
for \( i = 1 \) to \( n \) do
    plans(\( \{ R_i \} \)) := access-plans(\( \{ R_i \} \))
    LATENCY-AWARE-PRUNE(plans(\( \{ R_i \} \)))
toDo := \( R \)
while \( |\text{toDo}| > 1 \) do
    \( b := \text{balanced-parameter(|toDo|, k)} \)
    for \( i = 2 \) to \( b \) do
        for all \( S \subset R \) and \( |S| = i \) do
            plans(\( S \)) := \( \emptyset \)
            forall \( O \subset S \) and \( O \neq \emptyset \) do
                plans(\( S \)) := plans(\( S \)) \cup PRIVACY-JOIN(plans(\( O \)), plans(\( S \setminus O \)))
                LATENCY-AWARE-PRUNE(plans(\( S \))
find \( P, V \) with \( P \in \text{plans}(V), V \subset \text{toDo}, |V| = k \) such that\( \text{eval}(P) = \text{min}\{\text{eval}(P') | P' \in \text{plans}(W), W \subset \text{toDo}, |W| = k \} \)
generate new symbol: \( T, \text{plans}(T) = \{ P \} \)
toDo := toDo \setminus V \cup \{ T \}
for all \( O \subset V \) do
    delete(plans(\( O \)))
finalise-plans(plans(\( R \)))
LATENCY-AWARE-PRUNE(plans(\( R \)))
return plans(\( R \))
```
An illustration of the critical phases in Query Guard

Privacy-preserving Joins

Privacy Levels: PL₄ > PL₃ > PL₂ > PL₁
An illustration of the critical phases in Query Guard

Latency-aware Prune

Privacy Levels: $PL_4 > PL_3 > PL_2 > PL_1$

Algorithm 3: Latency-aware function

1. function $LATENCY$-\textit{AWARE}$-$\textit{PRUNE}$(plans(S))
2. result := $\{\}$;
3. foreach site e do $t[e]$:= null;
4. foreach plan p in $plans(S)$ do
5. $c :=$ extract the catalog information;
6. if $f_c(p) < f_c(t[e])$ such $t[e] \neq \text{null}$ then $t[e] := p$;
7. foreach site e do result.add($t[e]$) such $t[e] \neq \text{null}$;
8. return result

\[f_{cost}(\mathcal{L}) = C_{cent} + \sum_{(e_i \rightarrow e_j) \in \mathcal{L}} (n_{e_i \rightarrow e_j} \cdot t_{e_i \rightarrow e_j}^{estimate}) \]

\[t_{e_i \rightarrow e_j}^{estimate} = \alpha \cdot t_{avg} / n_{send} \]

\[\arctan(d_{geo}(e_i, e_j)) \cdot 2 / \pi \]
Experimental Evaluation

• General Setup
 • Simulate a set of edge nodes with artificially injected network latency
 • 15 edge nodes with specific geography information
 • Latency (ms) of the network traffic is estimated based on the distance (miles) using a linear model
 • \(y = 0.022x + 4.862 \)

All the experiments were executed using randomly generated queries over randomly generated relations/streams that are distributed on the 15 edge nodes.

<table>
<thead>
<tr>
<th>Edge Node Address</th>
<th>Privacy Level</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.1.1-8</td>
<td>{0,0,1,2,3,4,5}</td>
<td>Area nearby Pittsburgh, PA</td>
</tr>
<tr>
<td>10.0.1.9</td>
<td>0</td>
<td>Erie, PA</td>
</tr>
<tr>
<td>10.0.1.10</td>
<td>1</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>10.0.1.11</td>
<td>2</td>
<td>Allentown, PA</td>
</tr>
<tr>
<td>10.0.1.12</td>
<td>3</td>
<td>Harrisburg, PA</td>
</tr>
<tr>
<td>10.0.1.13</td>
<td>0</td>
<td>Cleveland, OH</td>
</tr>
<tr>
<td>10.0.1.14</td>
<td>2</td>
<td>Morgantown, WV</td>
</tr>
<tr>
<td>10.0.1.15</td>
<td>3</td>
<td>Washington D.C.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relation/Stream</th>
<th>Edge Node</th>
<th>Transmission Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10.0.1.{3,4,5,7,10,14,15}</td>
<td>10.0.1.{1-12}</td>
</tr>
<tr>
<td>B2</td>
<td>10.0.1.{6,8,11,12}</td>
<td>10.0.1.{1-12}</td>
</tr>
<tr>
<td>C3</td>
<td>10.0.1.{2,6,11}</td>
<td>10.0.1.{1-12}</td>
</tr>
<tr>
<td>D4</td>
<td>10.0.1.{2,4,5,6,11,12,13}</td>
<td>10.0.1.{1-12}</td>
</tr>
<tr>
<td>E5</td>
<td>10.0.1.{4,12,13}</td>
<td>10.0.1.{1-12}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relation Type</th>
<th>Cardinality of Relation</th>
<th>Simulation Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10-100</td>
<td>5%</td>
</tr>
<tr>
<td>II</td>
<td>100-1000</td>
<td>15%</td>
</tr>
<tr>
<td>III</td>
<td>1,000-10,000</td>
<td>30%</td>
</tr>
<tr>
<td>IV</td>
<td>10,000-100,000</td>
<td>30%</td>
</tr>
<tr>
<td>V</td>
<td>100,000-100,000,000</td>
<td>15%</td>
</tr>
<tr>
<td>VI</td>
<td>1,000,000-10,000,000</td>
<td>5%</td>
</tr>
</tbody>
</table>

† The cardinality of a stream indicates the size of synopsis in DSMS.
Experimental Evaluation

A case study of privacy-preserving processing

A1 ⊗ B2 ⊗ C3 ⊗ D4 ⊗ E5
Experimental Evaluation

• Comparison to IDP1
 • Execution Time
 • our proposed technique has non-negligible performance advantage in execution time
Experimental Evaluation

• Comparison to IDP1
 • Memory Usage
 • our proposed technique has non-negligible performance advantage in memory usage aspects.
Experimental Evaluation

• Effect of latency awareness setting
 • to evaluate whether the latency-aware cost model influences the performance of our proposed framework

• The latency-aware setting has a negligible effect on the memory usage of the algorithm, while the execution time cost has slight growth when the relation number increase.
Conclusion

• A privacy-preserving latency-aware query optimization framework
 • *Privacy disclosure risk analysis*
 • *Latency concerns analysis*

• *Tackled privacy-aware and latency optimized query processing in edge computing environments*
• *Evaluate the proposed techniques in terms of execution time and memory usage*
 • our results show that the proposed methods perform better than conventional techniques while achieving the intended privacy goals.
Q & A

Thanks